รูปสามเหลี่ยม

รูปสามเหลี่ยม

 เป็นหนึ่งในรูปร่างพื้นฐานในเรขาคณิต คือรูปหลายเหลี่ยมซึ่งมี 3 มุมหรือจุดยอด และมี 3 ด้านหรือขอบที่เป็นส่วนของเส้นตรง รูปสามเหลี่ยมที่มีจุดยอด A, B, และ C เขียนแทนด้วย ABC

ในเรขาคณิตแบบยุคลิด จุด 3 จุดใดๆ ที่ไม่อยู่ในเส้นตรงเดียวกัน จะสามารถสร้างรูปสามเหลี่ยมได้เพียงรูปเดียว และเป็นรูปที่อยู่บนระนาบเดียว  

 

แบ่งตามความยาวของด้าน

  • รูปสามเหลี่ยมด้านเท่า (equilateral) มีด้านทุกด้านยาวเท่ากัน รูปสามเหลี่ยมด้านเท่าเป็นรูปหลายเหลี่ยมมุมเท่า นั่นคือมุมภายในทุกมุมจะมีขนาดเท่ากัน คือ 60° และเป็นรูปหลายเหลี่ยมปรกติ รูปสามเหลี่ยมหน้าจั่ว (isosceles) มีด้านสองด้านสมภาคกัน (ตามความหมายเริ่มแรกโดยยุคลิด ถึงแม้ว่ารูปสามเหลี่ยมด้านเท่าจะสามารถจัดว่าเป็นรูปสามเหลี่ยมหน้าจั่วได้ด้วย เพราะมีด้านที่สมภาคกันอย่างน้อยสองด้าน) และมีมุมสองมุมขนาดเท่ากัน คือมุมที่ไม่ได้ประกอบด้วยด้านที่เท่ากันทั้งสอง
  • รูปสามเหลี่ยมด้านไม่เท่า (scalene) ด้านทุกด้านจะมีความยาวแตกต่างกัน มุมภายในก็มีขนาดแตกต่างกันด้วย  แบ่งตามมุมภายใน
  • รูปสามเหลี่ยมมุมฉาก (right, right-angled, rectangled) มีมุมภายในมุมหนึ่งมีขนาด 90° (มุมฉาก) ด้านที่อยู่ตรงข้ามกับมุมฉากเรียกว่า ด้านตรงข้ามมุมฉาก ซึ่งเป็นด้านที่ยาวที่สุดในรูปสามเหลี่ยม อีกสองด้านเรียกว่า ด้านประกอบมุมฉาก ความยาวด้านของรูปสามเหลี่ยมมุมฉากสัมพันธ์กันตามทฤษฎีบทพีทาโกรัส นั่นคือกำลังสองของความยาวของด้านตรงข้ามมุมฉาก c จะเท่ากับผลบวกของกำลังสองของด้านประกอบมุมฉาก a, b เขียนอย่างย่อเป็น a2 + b2 = c2 ดูเพิ่มเติมที่ รูปสามเหลี่ยมมุมฉากพิเศษ
  • รูปสามเหลี่ยมมุมเฉียง (oblique) ไม่มีมุมใดเป็นมุมฉาก ซึ่งอาจหมายถึงรูปสามเหลี่ยมมุมป้านหรือรูปสามเหลี่ยมมุมแหลม
  • รูปสามเหลี่ยมมุมป้าน (obtuse) มีมุมภายในมุมหนึ่งมีขนาดใหญ่กว่า 90° (มุมป้าน)
  • รูปสามเหลี่ยมมุมแหลม (acute) มุมภายในทุกมุมมีขนาดเล็กกว่า 90° (มุมแหลม) รูปสามเหลี่ยมด้านเท่าเป็นรูปสามเหลี่ยมมุมแหลม แต่รูปสามเหลี่ยมมุมแหลมทุกรูปไม่ได้เป็นรูปสามเหลี่ยมด้านเท่า

 

ข้อเท็จจริงพื้นฐาน

ข้อเท็จจริงเบื้องต้นเกี่ยวกับรูปสามเหลี่ยมได้แสดงไว้ในหนังสือชื่อ Elements เล่ม 1-4 เมื่อประมาณ 300 ปีก่อนคริสตกาล รูปสามเหลี่ยมเป็นรูปหลายเหลี่ยมชนิดหนึ่ง และเป็น 2-ซิมเพล็กซ์ (2-simplex) รูปสามเหลี่ยมทุกรูปเป็นรูปสองมิติ

มุมภายนอก d เท่ากับมุมภายใน a รวมกับ c

มุมภายในของรูปสามเหลี่ยมในปริภูมิแบบยุคลิดจะรวมได้ 180° เสมอ ด้วยข้อเท็จจริงนี้ทำให้เราสามารถหาขนาดของมุมที่สาม เมื่อเราทราบขนาดของมุมแล้วสองมุม มุมภายนอกของรูปสามเหลี่ยม (คือมุมที่อยู่ติดกับมุมภายใน โดยต่อความยาวด้านหนึ่งออกไป) จะมีขนาดเท่ากับมุมภายในที่ไม่ได้อยู่ติดกับมุมภายนอกรวมกัน สิ่งนี้เรียกว่าทฤษฎีบทมุมภายนอก มุมภายนอกทั้งสามจะรวมกันได้ 360° เช่นเดียวกับรูปหลายเหลี่ยมนูนอื่นๆ

ผลบวกของความยาวของสองด้านใดๆ ในรูปสามเหลี่ยม จะมากกว่าความยาวของด้านที่สามเสมอ สิ่งนี้เรียกว่าอสมการอิงรูปสามเหลี่ยม (กรณีพิเศษของการเท่ากันคือ มุมสองมุมถูกยุบให้มีขนาดเป็นศูนย์ รูปสามเหลี่ยมจะลดตัวลงเป็นเพียงส่วนของเส้นตรง)

รูปสามเหลี่ยมสองรูปจะเรียกว่า คล้ายกัน ก็ต่อเมื่อทุกมุมของรูปหนึ่ง มีขนาดเท่ากับมุมที่สมนัยกันของอีกรูปหนึ่ง ซึ่งในกรณีนี้ ด้านที่สมนัยกันจะเป็นสัดส่วน (proportional) ต่อกัน ตัวอย่างกรณีนี้เช่น รูปสามเหลี่ยมสองรูปที่มีมุมร่วมกันมุมหนึ่ง และด้านตรงข้ามมุมนั้นขนานกัน เป็นต้น

นอกจากนี้ยังมีสัจพจน์และทฤษฎีบทพื้นฐานเกี่ยวกับการคล้ายกันของรูปสามเหลี่ยมดังนี้

  • รูปสามเหลี่ยมสองรูปจะคล้ายกัน ถ้ามีมุมที่สมนัยกันอย่างน้อยสองมุมเท่ากัน
  • ถ้าด้านที่สมนัยกันสองด้านเป็นสัดส่วนต่อกัน และมุมที่ด้านทั้งสองประกอบอยู่สมภาค (congruent) ต่อกัน แล้วรูปสามเหลี่ยมสองรูปนั้นจะคล้ายกัน
  • ถ้าด้านทั้งสามของรูปสามเหลี่ยมสองรูปเป็นสัดส่วนต่อกัน แล้วรูปสามเหลี่ยมสองรูปนั้นจะคล้ายกัน

สำหรับรูปสามเหลี่ยมสองรูปที่สมภาคต่อกัน (หรือเรียกได้ว่า เท่ากันทุกประการ) ซึ่งหมายความว่ามุมและด้านมีขนาดเท่ากันทั้งหมด ก็ยังมีสัจพจน์และทฤษฎีบทเกี่ยวกับเรื่องนี้

  • สัจพจน์ ด้าน-มุม-ด้าน: ถ้าด้านสองด้านและมุมที่อยู่ระหว่างสองด้านนั้นสมภาคต่อกัน ดังนั้นรูปสามเหลี่ยมทั้งสองจะสมภาคต่อกัน
  • สัจพจน์ มุม-ด้าน-มุม: ถ้ามุมสองมุมและด้านที่อยู่ระหว่างสองมุมนั้นสมภาคต่อกัน ดังนั้นรูปสามเหลี่ยมทั้งสองจะสมภาคต่อกัน
  • สัจพจน์ ด้าน-ด้าน-ด้าน: ถ้าด้านทั้งสามของรูปสามเหลี่ยมสมภาคต่อกัน ดังนั้นรูปสามเหลี่ยมทั้งสองจะสมภาคต่อกัน
  • ทฤษฎีบท มุม-มุม-ด้าน: ถ้ามุมสองมุมและด้านที่ไม่อยู่ระหว่างสองมุมนั้นสมภาคต่อกัน ดังนั้นรูปสามเหลี่ยมทั้งสองจะสมภาคต่อกัน
  • ทฤษฎีบท ด้านตรงข้ามมุมฉาก-ด้านประกอบมุมฉาก (ฉาก-ด้าน-ด้าน): ถ้าด้านประกอบมุมฉากด้านหนึ่งและด้านตรงข้ามมุมฉากของรูปสามเหลี่ยมมุมฉากสองรูปสมภาคกัน ดังนั้นรูปสามเหลี่ยมทั้งสองจะสมภาคต่อกัน
  • ทฤษฎีบท ด้านตรงข้ามมุมฉาก-มุม (ฉาก-มุม-ด้าน): ถ้าด้านตรงข้ามมุมฉากและมุมแหลมมุมหนึ่งของรูปสามเหลี่ยมมุมฉากสองรูปสมภาคกัน ดังนั้นรูปสามเหลี่ยมทั้งสองจะสมภาคต่อกัน
  • เงื่อนไข ด้าน-ด้าน-มุม (มุม-ด้าน-ด้าน): ถ้าด้านสองด้านและมุมที่ไม่อยู่ระหว่างสองด้านนั้นสมภาคต่อกัน และถ้าหากมุมนั้นเป็นมุมป้าน นั่นคือด้านตรงข้ามยาวกว่าด้านประชิดมุม หรือด้านตรงข้ามเท่ากับไซน์ของมุมคูณด้วยด้านประชิดมุม ดังนั้นรูปสามเหลี่ยมทั้งสองจะสมภาคต่อกัน

ถึงแม้ว่ามุมทั้งสามของรูปสามเหลี่ยมจะสมภาคกัน (มุม-มุม-มุม) เรายังไม่สามารถสรุปได้ว่ารูปสามเหลี่ยมทั้งสองสมภาคต่อกัน เพียงแค่คล้ายกันโปรดสังเกตต่อไปอีกว่า

  • เงื่อนไข ด้าน-ด้าน-มุม รับรองไม่ได้ว่ารูปสามเหลี่ยมจะสมภาคกันเสมอ
  • สำหรับทฤษฎีบท ด้านตรงข้ามมุมฉาก-ด้านประกอบมุมฉาก รูปสามเหลี่ยมจะต้องเป็นรูปสามเหลี่ยมมุมฉาก หากไม่เช่นนั้นก็จะถูกจัดเป็นเงื่อนไข ด้าน-ด้าน-มุม ซึ่งก็รับรองไม่ได้ว่ารูปสามเหลี่ยมจะสมภาคกัน

ใส่ความเห็น

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / เปลี่ยนแปลง )

Twitter picture

You are commenting using your Twitter account. Log Out / เปลี่ยนแปลง )

Facebook photo

You are commenting using your Facebook account. Log Out / เปลี่ยนแปลง )

Google+ photo

You are commenting using your Google+ account. Log Out / เปลี่ยนแปลง )

Connecting to %s

ติดตาม

Get every new post delivered to your Inbox.

%d bloggers like this: